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Abstract—Network application optimization is essential for
improving the performance of the application as well as its user
experience. The network application parameters are crucial in
making proper decisions for network application optimizations.
However, many works are impractical by assuming a priori
knowledge of the parameters which are usually unknown and
need to be estimated. There have been studies that consider
optimizing network application in an online learning context
using multi-armed bandit models. However, existing frameworks
are problematic as they only consider to find the optimal
decisions to minimize the regret, but neglect the constraints (or
guarantee) requirements which may be excessively violated. In
this paper, we propose a novel online learning framework for
network application optimizations with guarantee. To the best
of our knowledge, we are the first to formulate the stochastic
constrained multi-armed bandit model with time-varying “multi-
level rewards” by taking both “regret” and “violation” into
consideration. We are also the first to design a constrained
bandit policy, Learning with Minimum Guarantee (LMG), with
provable sub-linear regret and violation bounds. We illustrate
how our framework can be applied to several emerging network
application optimizations, namely, (1) opportunistic multichannel
selection, (2) data-guaranteed crowdsensing, and (3) stability-
guaranteed crowdsourced transcoding. To show the effectiveness
of LMG in optimizing these applications with different minimum
requirements, we also conduct extensive simulations by compar-
ing LMG with existing state-of-the-art policies.

I. INTRODUCTION

In a world where network applications are becoming ubiqui-

tous and competitive, it is important for a network application

to be optimized not only to differentiate itself from other

applications but also to provide the best possible experience

for its users. When considering performance optimization for

different network applications, a common feature emerges: one

has to make judicious decisions to perform an optimization

task. For example, in an opportunistic multichannel access

network [1], a secondary user needs to choose appropriate

channels to use to increase his/her throughput for faster

transmissions. In mobile crowdsensing [2], a task organizer

needs to select proper participants to improve the quality of

crowdsensed data. In crowdsourced live stream transcoding [3],

a platform needs to schedule transcoding assignments to

suitable viewers to speed up live stream transcoding.

The parameter settings are essential prerequisites in making

optimization decisions for the network applications. Many

works in the literature assume that the parameters are known

as a priori knowledge. However, the parameters of a network

application are not fixed and can vary with the decisions or

even change over time. For instance, in the opportunistic

multichannel access network, it is assumed in [4] that the

statistical information of the channels, such as the probabilities

that channels are free and the throughput of the channels are

fully available to the channel users. In practice, however, due

to the uncertainty in channel utilization or environmental noise,

these statistics are not fixed as a priori and must be estimated

by the users.

Therefore, to estimate the network application parameters

and to relax the impractical assumption, it is natural to

consider optimizing network application in an online learning
context, where the decision maker is not required to possess

prior statistics of the parameters but will try to learn as

observations are made. Within this context, the multi-armed

bandit (MAB) [5], [6] setup has become an attractive modeling

framework for many network applications as it allows a user to

estimate the parameters and perform optimization throughout an

online learning process. For this reason, there have been studies

on this learning framework for optimizing different network

applications, e.g., [7], [8] proposed MAB based policies to

estimate throughput of different channels in an opportunistic

network and select the best channel to maximize the throughput

and [9] designed budget limited crowdsensing policies based

on MAB paradigms to maximize the revenue of a crowdsensing

task.

However, all these learning policies are limited as they

only consider finding the optimal decision that maximizes the

cumulative reward, e.g., (the channel throughput, the sensing

revenue, etc.) while neglecting the constraints or guarantee
requirements in network application optimizations. It follows

that the performance of these policies is measured by regret,
the difference between a learning policy and the Oracle policy

which always makes the optimal decision.

In fact, in addition to seeking the optimal decision, many

real-world network application optimization tasks have some

minimum guarantee requirements (or constraints), and therefore

a decision maker may violate these requirements while learning

the parameters to optimize the network applications. As an

example, a secondary user in an opportunistic multichannel

access network would select channels to not only maximize

throughput but also try to ensure at least one free channel to
use at each time slot to keep data transmission stable. In such

a channel selection procedure, it is likely that the user cannot

use any free channel in the selected channels at some time

slots and thereby violate the minimum guarantee requirement.



Hence, there is a need to have an additional performance

measure for a learning policy, violation, which measures the

cumulative violations of the minimum guarantee requirement

that a learning policy has made in the online learning process.

To the best of our knowledge, we are the first to propose

an online learning framework and formulate the stochastic

constrained MAB model with time-varying multi-level rewards

to tackle the optimization task with a minimum guarantee

requirement in various network applications. Specifically, each

arm is associated with a stochastic level-1 reward and a time-

varying level-2 reward (can be further extended to level-n
reward), and together they produce a compound reward. At

each time slot, a decision maker selects m arms from M arms

(1 ≤ m ≤ M ), observes the level-1 and level-2 rewards of the

m selected arms, and receives the compound rewards from the

m selected arms. Moreover, to satisfy the minimum guarantee

requirement, there is a minimum guarantee threshold ρ such

that the total level-1 reward of the selected m arms should be

at least ρ.

Our goal is to find a learning policy to maximize the total
compound reward as well as to keep the average total level-1
reward above the minimum guarantee threshold ρ. The key

issue is to balance between maximizing the total compound

reward (i.e., minimizing the regret) and satisfying the minimum

guarantee threshold constraint (i.e., keeping low violation). To

achieve this, we are the first work to design a constrained

bandit policy, Learning with Minimum Guarantee (LMG),

which has the attractive property that achieves sub-linear regret

and violation bounds. To show the general applicability of our

framework, we illustrate how our LMG can be applied to

several network applications: (1) opportunistic multichannel

selection, (2) data-guaranteed crowdsensing, and (3) stability-

guaranteed crowdsourced transcoding. We also compare LMG

with existing state-of-the-art algorithms and conduct extensive

simulations to show the effectiveness of our LMG policy.

Contributions: Our contributions are as follows: (i) To our

best knowledge, we are the first to propose an online learning

framework using the stochastic constrained MAB model with

time-varying multi-level rewards for network application opti-

mizations with the minimum guarantee requirements. (ii) We

design a new constrained bandit policy, LMG, by taking the

minimum guarantee requirement ρ into consideration with

provable sub-linear regret and violation bounds. (iii) We show

how LMG can be applied to three different network applications.

(iv) We demonstrate the effectiveness of our LMG policy by

comparing it with existing state-of-the-art policies and show

that LMG achieves better network application optimizations in

terms of maximizing the cumulative compound reward while

meeting the minimum guarantee requirements.

The rest of the paper is organized as follows. The framework

using stochastic constrained MAB model with time-varying

multi-level rewards is presented in Sec. II. The detailed LMG

policy design and the proof of sub-linear regret and violation

bounds are elaborated in Sec. III. The applications of LMG

and the comparison results are presented in Sec. IV. Related

work is given in Sec. V. Finally, Sec. VI concludes the paper.

II. CONSTRAINED MULTI-ARMED BANDIT MODEL

In this section, we present the details of our online learning

framework using stochastic constrained multi-armed bandit

model with time-varying multi-level rewards.

Formally, let M = {1, . . . ,M} denote the set of M arms.

Each arm i ∈ M is associated with two unknown random

processes, Ui(t) and Vi(t), t = 1, . . . , T . Specifically, Ui(t)
characterizes the arm i’s level-1 reward and Vi(t) characterizes

arm i’s level-2 reward.1 We assume that Ui(t) are stationary

and independent across i, and the probability distribution of

Ui(t) has a finite support. As for Vi(t), they are not necessarily

stationary but are bounded across i. Without loss of generality,

we normalize Ui(t) ∈ [0, 1] and Vi(t) ∈ [0, 1]. We also assume

that Ui(t) is independent of Vi(t) for i ∈ M and t = 1, . . . , T .

The stationary random process Ui(t), is assumed to have

unknown mean ui = E[Ui(t)]. u
t
i and vti are the realizations

of Ui(t) and Vi(t) at time t, respectively, 1 ≤ i ≤ M .

Let u = (u1, . . . , uM ).2 Let ut = (ut
1, . . . , u

t
M ) and vt =

(vt1, . . . , v
t
M ) denote the realization vectors at time t for the

random processes Ui(t) and Vi(t), respectively for 1 ≤ i ≤ M .

Let pt = (pt1, . . . , p
t
i, . . . , p

t
M ) be the probabilistic selection

vector of the M arms at time t, where pti ∈ [0, 1] is the

probability of selecting arm i at time t. At time t, a set of

m (1 ≤ m ≤ M ) arms It ∈ M (|It| = m) is selected via

a dependent rounding procedure [10], which guarantees the

probability that i ∈ It is pti at time t (see Sec. III). Thus, the

expected number of selected arms is exactly m at each time

t, i.e., 1ᵀpt = m, where 1 = (1, . . . , 1). For each arm i ∈ It,
the arm selection policy observes a level-1 reward ut

i generated

by Ui(t), as well as a level-2 reward vti generated by Vi(t),
and receives a compound reward. Specifically, the compound

reward, gti , of an arm i at time t is generated by the random

process Gi(t) = Ui(t)Vi(t). Let gti = ut
iv

t
i , 1 ≤ i ≤ M ,

and gt = (gt1, . . . , g
t
i , . . . , g

t
M ). In addition, there is a preset

minimum guarantee threshold ρ > 0 such that the average

of the sum of the level-1 rewards needs to be above this

threshold, i.e., E[uᵀpt] ≥ ρ. At time t, the expected total

compound reward is E[
∑

t g
ᵀ
t pt].

Our objective is to design a learning policy π to choose

the selection vectors pπ
t for t = 1, . . . , T such that the regret,

which is also referred to as loss compared with the Oracle, is

as small as possible. Specifically, the Oracle is a policy that

knows all the parameters: u and vt at each time t. Thus it can

select the optimal arms such that
∑

t g
ᵀ
t pt is maximized and

uᵀpt ≥ ρ is satisfied at each time t. Regret for a policy π is

defined as,

Rπ(T ) = max
uᵀpt≥ρ

∑T

t=1
gᵀ
t pt − E

[∑T

t=1
gᵀ
t p

π
t

]
. (1)

Note that computing the Oracle requires full knowledge

of the parameters: u and vt at each time t. However, these

parameters can only be estimated when arms are selected.

Hence, designing a policy π to maximize the total compound
1One can easily extend two level rewards to model n level (n ≥ 2) rewards

by associating each arm with n random processes.
2All vectors defined in this paper are column vectors.



reward (or equivalently, minimize the regret) without full

knowledge is very challenging. To approach the Oracle, a policy

π should learn the parameters by leveraging the observations

from the selected arms at each time t. Note that pπ
t may

initially violate the constraint especially when it has little

information about the arms. To measure the overall violations

of the constraint at time T , the violation of the policy π is

defined as,

Vπ(T ) = E

[∑T

t=1
(ρ− uᵀpπ

t )
]+

, (2)

where [·]+ = max(·, 0). Regret and violation are two important

metrics to measure the performance of an arm selection policy

π. In particular, for a policy π, a lower regret means that π
gets closer to the Oracle and a smaller violation means that π
becomes better in satisfying the constraint as time t increases.

III. POLICY DESIGN

In this section, we elaborate the design of our policy,

“Learning with Minimum Guarantee (LMG)”, for the stochastic

constraint bandit model described in Sec. II. The main technical

challenge is to balance between maximizing the total compound

reward (or minimizing the regret in Eq. (1)) and, at the

same time, satisfying the minimum guarantee threshold ρ (or

maintaining low violation in Eq. (2)). To address this challenge,

we incorporate the theory of Lagrange method in constrained

optimization into our policy design. We consider minimizing

a modified regret function that includes the violation with

an adjustable penalty coefficient that increases the regret

when there is any non-zero violation. Specifically, our policy

introduces a sub-linear bound for the Lagrange function of

Rπ(T ) and Vπ(T ) in the following structure,

Rπ(T ) + λ(T )(Vπ(T ))
2 ≤ T 1−θ, 0 < θ ≤ 1, (3)

where λ(T ) plays the role of a Lagrange multiplier. From (3),

we derive a bound for Rπ(T ) and a bound for Vπ(T ) as:

Rπ(T ) ≤ O(T 1−θ),Vπ(T ) ≤
√
O(T 1−θ +mT )/λ(T ), (4)

where the bound for Vπ(T ) in (4) is for the fact that −Rπ(T ) ≤
O(mT ) for any policy π. With properly adjusted λ(T ) and

θ, both the regret and violation can be bounded by sub-linear

functions of T .

Another technical challenge is that the search space for

the optimal set of arms for our bandit problem is very large

since the number of possible choices can be as large as
(
M
m

)
at each time. Hence, the upper bounds of the regret and the

violation with respect to M and m can be large. To avoid the

combinatorial explosion, we judiciously keep M weights for

the M arms instead of
(
M
m

)
weights for each set of m arms.

Essentially, LMG updates the weights of the M arms and

recomputes the Lagrange multiplier λt in each iteration. Then

the policy calculates the probabilistic selection vector p̃t for the

M arms according to their weights. Specifically, an arm that is

more likely to maximize the total compound reward under the

threshold constraint is assigned with a higher probability of

being selected. Next, the policy selects m arms from the M

Algorithm 1: Learning with Minimum Guarantee (LMG)

Init: w1 = 1, λ1 = 0, ρ > 0, β = (1/m− γ/M)/(1− γ),
ζ = γηm/(η +m)M

1: for t = 1, . . . , T do
2: St = ∅, It = ∅.

3: if maxi∈M wt
i ≥ β

∑M
i=1 w

t
i then

4: Find αt such that

αt/
(∑M

i=1,wt
i≥αt

αt +
∑M

i=1,wt
i<αt

wt
i

)
= β

5: St = {i : wt
i ≥ αt}

6: for i = 1, . . . ,M do

w̃t
i = αt if i ∈ St; otherwise, w̃t

i = wt
i

7: for i = 1, . . . ,M do

p̃ti = m[(1− γ)w̃t
i/

∑M
i=1 w̃

t
i + γ/M ]

8: It = DepRound(m, p̃t)
9: for i ∈ It do receive ut

i and vti
10: for i = 1, . . . ,M do

ût
i = ut

i/p̃
t
i�(i ∈ It), ĝti = ut

iv
t
i/p̃

t
i�(i ∈ It)

11: for i = 1, . . . ,M do

wt+1
i =

{
wt

i if i ∈ St;

wt
i exp[ζ(ĝ

t
i + λtû

t
i)] if i /∈ St

12: λt+1 = [(1− ηζ)λt − ζ(
ûᵀ

t p̃t

1−γ − ρ)]+

13: function DepRound(m,p)

14: while exist i ∧ pi ∈ (0, 1) do
15: Find i, j, i �= j, such that pi,j ∈ (0, 1)
16: a = min{1− pi, pj}, b = min{pi, 1− pj}
17: (pi, pj) =

{
(pi + a, pj − a) with prob. b

a+b ;

(pi − b, pj + b) with prob. a
a+b .

return I = {i | pi = 1, 1 ≤ i ≤ M}

arms according to the probabilistic selection vector p̃t using

the dependent rounding algorithm, DepRound, in [10].

The details of LMG policy are shown in Algorithm 1.

In particular, Algorithm 1 maintains a weight vector wt =
{wt

1, . . . , w
t
M} for the M arms at time t, which is used to

calculate the probabilistic selection vector p̃t (line 3 to line 7).

Line 3 to line 6 ensure that the probabilities in p̃t are less than

or equal to 1. At line 8, we deploy the dependent rounding

function, DepRound, (see details from line 13 to line 17) to

select m arms using the calculated p̃t. Specifically, DepRound

probabilistically updates p̃t until p̃ti is either 0 or 1 and

maintains the condition that 1ᵀp̃t = m. At line 9, the LMG

policy receives the rewards ut
i and vti , and then performs online

learning on the parameters ui, vi and gi of arm i’s multi-level

rewards by giving unbiased estimates of ût
i and ĝti for each

arm i ∈ M at line 10. Specifically, the level-1 reward ût
i, and

the compound reward ĝti are estimated by ut
i/p̃

t
i, and ut

iv
t
i/p̃

t
i,



respectively, such that E[ût
i] = ut

i, and E[ĝti ] = ut
iv

t
i . Here

�(E) is the indicator function, i.e., �(E) = 1 if the event E
occurs and �(E) = 0 otherwise. Finally, the weight vector

wt and the Lagrange multiplier λt are updated (line 11 and

line 12) using the estimations at the end of each iteration.

A. Regret and Violation Analysis

For our policy LMG shown in Algorithm 1, we have the

following attractive property,

Theorem 1. Let ζ = γηm
(η+m)M , γ = min

(
1,
√

2(e−2)M+Mm
m ln(M/m)T 2/3

)
and η = 4(e−2)γm

1−γ . By running the LMG policy π̃, we achieve
sub-linear bounds for both the regret and violation as follows:

Rπ̃(T )≤O(mM ln(M)T
2
3 ) and Vπ̃(T )≤O(m

1
2M

1
2T

5
6 ).

We refer the interested readers to Appendix VII for the

details of the proof.

Remark: Note that a good arm selection policy π should have

both sub-linear Rπ(T ) and sub-linear Vπ(T ) with respect to

T . If these two metrics are linear, it means the policy π is

not learning from the history rewards of the selected arms. A

simple example of such policies is the uniform arm selection

policy, where any m arms are selected with equal probability.

Compared with the optimal policy, such a random policy would

result in both linear regret and linear violation.

IV. NETWORK APPLICATIONS

In this section, we describe several network applications

with different minimum guarantee requirements where LMG

can be applied. For each application, we first describe the

problem and map the problem to our stochastic constrained

bandit model. Then we carry out simulations and compare

LMG with existing state-of-the-art online learning policies to

show the effectiveness of LMG in different application settings.

A. Opportunistic Multichannel Selection
1) Problem Description: We study the opportunistic mul-

tichannel selection problem in opportunistic channel access

networks [1] where primary users are licensed and have priority

to use the channels, while secondary users are unlicensed

and should sense and use the available channels to avoid

taking up the channels of primary users [11]. Consider a

network consisting of M independent channels which are

licensed to primary users who communicate according to a

synchronous time slot structure. At each time slot, channels

can be primary-free (unoccupied by primary users) but with

unknown probabilities. These M channels also have unknown
varying throughput/bandwidths at different time slots. Consider

now a secondary user seeking opportunities of transmitting

in the free slots of these M channels. With a limited sensing

capability, a secondary user can only access a subset of

m (1 ≤ m ≤ M ) channels and observe the occupancies
and throughput of the accessed channels. To use as many

primary-free channels as possible and also maximize one’s

throughput, a sensible secondary user should take both the

primary-free probabilities and the throughput of different

channels into account in selecting the channels. On the one

hand, selecting channels that have higher throughput facilitates

faster data transmission. On the other hand, selecting channels

that have higher primary-free probabilities helps to establish a

multichannel connection with a higher success rate. Therefore,

to strike a balance between high throughput and high primary-

free probability, a worthy problem for the secondary user to

consider is to select channels that maximize the throughput and
keep the average number of accessed primary-free channels
above the minimum guarantee threshold ρ1.3

For example, in an opportunistic channel access network

with M = 10 channels, let us suppose that the primary-free

probabilities and the throughput of different channels are known

as shown respectively in row 2 and row 3 of Table I. (These are

typical parameter settings for an opportunistic channel access

network.) Note that the primary-free probabilities do not sum

up to 1 as the channels are independent, and the throughput of

each channel is normalized to [0, 1]. At a time slot, a secondary

user can only access m = 3 channels (e.g., channel #5, #6,

and #9), identify the primary-free channels therein, transmit

over and estimate the throughput of the accessed primary-free

channels. In addition, selecting channel #5, #6, and #9 in

Table I satisfies the minimum guarantee exactly supposing that

ρ1 = 1.5.

TABLE I: Primary-free Prob. and Throughput of 10 Channels

Channel
No.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Primary-free
Prob.

0.15 0.2 0.2 0.1 0.6 0.55 0.25 0.4 0.35 0.7

Channel
Throughput

0.65 0.55 0.6 0.7 0.2 0.25 0.5 0.3 0.4 0.1

This problem fits the general framework of our stochastic

constrained bandit model regarding the M channels as M arms,

the channel access probabilities as ui, and the throughput of

different channels as the time-varying vti , 1 ≤ i ≤ M , and

t = 1, . . . , T . Here, gt is the compound throughput of the M
channels and pt is the probabilistic selection vector of the

M channels. The average number of primary-free channels is

above the minimum guarantee threshold ρ1.
2) Performance Evaluation: Now consider the opportunis-

tic multichannel selection problem in the example above in the

online learning context where a policy has to estimate all the

parameters. The primary-free probabilities ui are taking from

row 2 of Table I for 1 ≤ i ≤ 10. The throughput vti of channel

i is time varying in an adversary fashion: the throughput starts

from a random value drawn uniformly at random from [0, vi]
where vi takes from row 3 in Table I; then in each time slot, it

decreases by 10/T until reaching 0 if the channel is primary-

free, or increases by 10/T until reaching vi if the channel has

been taken up by primary users, 1 ≤ i ≤ 10. This time varying

pattern can model the competitions among the secondary users

in selecting the channels. Specifically, if a channel is primary-

free at a time slot, a secondary user can use the channel at this

time slot, and the throughput of this channel would decrease for

other secondary users in the next time slot. If a channel is taken
3We use ρ with different indices for different applications.
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Fig. 1: Compound rewards (throughput) and violations of CSE.M, Oracle, and LMG. M = 10, m = 3, ρ1 = 1.5, and

T = 10, 000 in opportunistic multichannel selection.

up by primary users, then the channel’s potential throughput

would be large if the channel becomes primary-free in the next

time slot.

We compare our LMG policy with a modified version of

the state-of-the-art online channel selection policy in [7]. It

is worth noting that there are many salient works besides [7],

such as [8], [12], [13] that also considered online dynamic

selection for secondary users. However, these works mainly

focus on maximizing the throughput but neglect the importance

of the minimum guarantee threshold on the primary-free

probabilities. Furthermore, they are limited to single-channel

selection scenarios. Therefore, they cannot be generalized to

much broader multichannel selection scenarios. For comparison

purposes, we adapt the Continuous Sampling and Exploration
(CSE) policy proposed in [7], which is a single-channel

selection policy using the highest UCB (upper confidence

bound [6]) index, to select multiple channels with the m highest

UCB indices of channel throughput estimations. Thus, we name

the modified policy as CSE.M, where the letter M stands for

multiple.

In our experiments, LMG selects channels using Algo-

rithm 1. For CSE.M, it always selects the top-3 channels

with the highest UCB (upper confidence bound) indices

ĝti +
√
3 ln t/(2Ni(t)) where Ni(t) is the number of times

that channel i has been selected by the time slot t. As for

the Oracle, it knows u and vt and thus can calculate the

optimal selection vector p∗
t by solving maxuᵀp≥ρ1 (u ◦ vt)

ᵀ
p

at each time slot t.4 Therefore, the Oracle can select channels

that provide the maximum throughput and guarantee that the

average total primary-free probability is at least ρ1 by selecting

the channels with p∗
t at every time slot t.

We run the simulation for T = 10, 000 rounds and compare

the cumulative/per-time-slot compound rewards (throughput)

and violations of LMG and CSE.M. Note that we do not

compare the regret because the regret of the two policies

are defined differently: the regret of LMG is defined as in

Eq. (1) which compares the reward with the constrained optimal

strategy while the regret of CSE.M compares the reward with

unconstrained optimal strategy. In particular, the cumulative

compound reward at t is calculated by
∑t

t′=1

∑
i∈It′

gt
′
i . The

cumulative compound reward for the Oracle is calculated by∑t
t′=1(u ◦ vt′)

ᵀp∗
t′ . The per-time-slot compound reward at t

is the ratio between the cumulative compound reward and t.
4◦ is the element-wise product of two vectors.

Besides, the long-term cumulative violation at t is calculated

by (
∑t

t′=1(ρ1 −
∑

i∈It′
ut′
i ))

+ and the per-time-slot violation

at t is the ratio between the cumulative violation and t.
As shown in Fig. 1(a), the cumulative compound reward of

LMG almost coincides with the cumulative compound reward

of the Oracle at each time slot. To gain more insight, as shown

in Fig. 1(b), the per-time-slot compound reward of LMG is

decreasing and smaller than that of the Oracle in the first few

time slots (t ≤ 237). This is because before this time slot,

LMG does not have enough knowledge about the primary-free

probabilities and throughput of the channels thereby selecting

the channels that have low compound rewards/throughput but

are less likely to violate the minimum guarantee threshold

ρ1. After t = 237, the per-time-slot compound reward of

LMG keeps increasing and gets closer to the Oracle. This

means LMG is getting more accurate in estimating the channel

parameters and selecting channels that have larger compound

rewards/throughput after t = 237. CSE.M, however, its

cumulative compound reward and per-time-slot compound

reward keep increasing and are larger than the Oracle. This

is because CSE.M merely selects channels that maximize

the compound throughput without considering the minimum

guarantee threshold of the total primary-free probability in

multichannel selection.
For the cumulative violation, as shown in Fig. 1(c), LMG has

a lower cumulative violation than that of CSE.M in each time

slot. Moreover, the cumulative violations of LMG and CSE.M

become increasingly separated from each other. This means

that LMG can select channels that are less likely to violate the

minimum guarantee threshold. This is also verified in Fig. 1(d)

where the per-time-slot violation of LMG keeps decreasing and

the per-time-slot violation of CSE.M keeps increasing. As for

the Oracle, it can select the channels without any violation thus

the violation is always 0 (not drawn in Fig. 1(c) and Fig. 1(d))

at each time slot.
Therefore, our simulation shows that LMG is effective in

selecting channels for the opportunistic multichannel selection

problem with the minimum guarantee threshold ρ1.

B. Data-guaranteed Crowdsensing
1) Problem Description: In the paradigm of crowdsensing,

different individuals/participants with sensing and computing

devices are organized to collect data for a specific sensing

task [2]. For example, smart phone users have been organized

to use the equipped gravity sensors on their phones to
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Fig. 2: Compound rewards (the amount of qualified data) and violations of LLR, Oracle, and LMG. M = 100, m = 10, ρ2 = 6,

and T = 20, 000 in data-guaranteed crowdsensing.

detect earthquakes in [14]. Due to the heterogeneity of the

crowdsensing participants and the variability of manufacturing

quality of the sensing devices, both the amount and the quality

of collected data can vary randomly from different participants

and sensing devices [15]. Thus, the amount of qualified data
(or useful data), which is the product of the amount of data

and the quality of data, also varies across different participants.

Hence, a task organizer has to carefully choose participants in

order to collect both massive and high quality (i.e., low-level

of corruption or noise) sensing data. In many crowdsensing

tasks, task organizers have to choose multiple participants.

For example, for dust level sensing for a large city, the task

organizer needs to select a number of participants to cover a

sensing area [9]. In addition, the participant selection procedure

should be performed for multiple times instead of one time

due to the randomness in collecting the sensing data. More

importantly, when choosing a participant, the task organizer

has to consider both the amount of sensing data and the quality

of sensing data that the participant can gather for two reasons:

first, a larger amount of data makes the data more statistically

significant; second, higher quality of data means the data is

less corrupted or noisy. Therefore, the task organizer should

consider selecting participants that maximize the total amount
of qualified data and keep the average total amount of collected
data above the minimum guarantee threshold ρ2.

Now consider selecting m participants from M candidate

participants for a crowdsensing task in T time slots. Our LMG

policy can be applied by taking the M candidate participants

as M arms, the amount of data participant i can gather as ui,

the quality of data participant i can provide as the time-varying

vti , for 1 ≤ i ≤ M and t = 1, . . . , T . Here, gt represents the

amount of qualified data that the M candidates can gather

and pt is the probability selection vector of the M candidates.

The amount of total collected data at each time slot should be

above the minimum guarantee threshold ρ2.

2) Performance Evaluation: Consider selecting m = 10
participants from M = 100 candidate participants with ρ2 = 6,

i.e., no less than 6 units of data is collected at each time slot,

for T = 20, 000 slots. The amount of data that participant i can

gather is modeled as a Bernoulli random variable with mean

ui uniformly random generated in [0.1, 0.8] for 1 ≤ i ≤ M .

For each participant i, the quality of data vti is time-varying:

the initial value of vti is uniform random generated in [0, 1];
if participant i is chosen for the sensing task, vti decreases by

50/T ; if vti becomes 0, it restores to the initial value. This

time-varying fashion can well model the sensing quality change

due to the sensing device degradation when a device is used

in multiple-round sensing [16].
We compare LMG with one of the state-of-the art policies,

Learning with Linear Rewards (LLR), proposed in [17] which

is an effective multi-armed bandit policy for selecting multiple

arms using UCB indices. Specifically, LLR selects the 10
highest UCB indices ĝti +

√
(m+ 1) ln t/Ni(t) where Ni(t)

is the number of times that participant i has been selected by

the time slot t. The Oracle is calculated in the same way as in

Sec. IV-A, and we use the methods described in Sec. IV-A to

calculate the cumulative/per-time-slot compound rewards and

violations. We would like to point out that there is a novel

online budget limited policy which stops learning once the

budget is exceeded proposed in [9]. LMG, on the contrary, is

a non-stopping policy with no budget limitation.
The results are shown in Fig. 2. Both the cumulative

(Fig. 2(a)) and the per-time-slot (Fig. 2(b)) compound rewards

of LMG are getting closer the Oracle after t = 3697. This

means LMG can learn the amount of data and the quality of

data that each participant can collect accurately after this time to

make judicious participant selections. The cumulative reward of

LLR is larger than the Oracle as it only maximizes the amount

of qualified data and ignores the minimum data-guarantee

requirement. Therefore, LLR has larger cumulative/per-time-

slot violations than LMG as shown in Fig. 2(a) and Fig. 2(b).

Thus, this simulation shows the effectiveness of LMG in

selecting participants for the data-guaranteed crowdsensing

problem with the minimum guarantee threshold ρ2.

C. Stability-guaranteed Crowdsourced Transcoding
1) Problem Description: Attracted by the increasing popu-

larity of live video streaming, many amateur broadcasters join

in the live streaming platforms and produce video contents

with different qualities (720p, 1080p, etc.) and codecs (H.264,

H.265, etc.). To better serve their viewers with real-time live

streaming, live streaming platforms have to transcode the video

contents into industrial standard representations [18]. Due to

the computation-intensive nature of video transcoding, these

platforms start to resort to the crowdsourced transcoding model,

where a platform can offload video transcoding assignments to

viewers with computing devices [3]. To assign a transcoding

assignment to viewers, a platform has to check whether the

viewers are available for the assignment and examine the
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Fig. 3: Compound rewards (effective computing power) and violations of MP-TS, Oracle, and LMG. M = 15, m = 4, ρ3 = 2.5,

and T = 12, 000 in stability-guaranteed crowdsourced transcoding.

viewers’ (devices’) computing power. As the online durations

of viewers are different, the availability probabilities of viewers

are also different. In addition, the computing power of different

viewers can be affected by the viewers’ behaviors and different

hardware configurations. Therefore, the effective computing
power of a viewer, which can be represented by the product of

the viewer’s availability probability and the viewer’s computing

power, varies from viewer to viewer. Hence, the platform has

to schedule the transcoding assignment to viewers in a multi-

round fashion since the assignment cannot be completed in one

time due to the variability of viewers’ availability probabilities

and computing power. Moreover, the platform has to consider

both the viewers’ availability probabilities and computing

power in scheduling the transcoding assignment. A higher total

availability probability means more viewers can participate in

transcoding at each round to keep live stream transcoding stable

without any interruption. Alternatively, larger total effective

computing power means the platform can transcode more live

streaming videos. Therefore, the platform should consider

selecting viewers that would maximize the total effective
computing power while guaranteeing the average number of
available viewers above ρ3.

Formally, let us consider selecting m viewers from M regular

viewers for a crowdsourced transcoding assignment in T time

slots. Thus LMG can be applied by considering M viewers

as M arms, the viewers’ availability probabilities as ui, and

the viewers’ computing power as the time-varying vti at t, 1 ≤
i ≤ M and t = 1, . . . , T . Here, gt is the effective computing

power of the M viewers and pt is the probability selection

vector of the M viewers. The number of available viewers at

each time slot should be at least ρ3.

2) Performance Evaluation: Consider selecting m = 4
viewers from M = 15 regular viewers and setting ρ3 = 2.5,

i.e., at least 2.5 viewers are available at each time slot, for T =
12, 000 slots. In particular, viewer i’s availability probability is

modeled as a Bernoulli random variable with mean ui generated

with a power-law distribution with scale 0.45, shape 6.2, and

normalized to [0, 1]; viewer i’s computing power is modeled

as a time-varying variable vti : the initial value vi is generated

uniform randomly in [0, 1], and vti = vi[1 + sin(2πt/24)]/2,

1 ≤ i ≤ M . This sinusoidal-varying pattern [19] can capture

the periodic (hourly or daily) change of a viewer’s computing

power.

We notice that [3] proposes a smart scheduling scheme

to select viewers for crowdsourced transcoding. However, it

requires prior knowledge of viewers’ availability probabilities

and therefore does not fit into the online learning framework.

For evaluation purpose, we compare another state-of-the-art

online learning policy, multi-play Thompson sampling (MP-

TS) [20], with LMG. In our simulation, MP-TS selects the

top-4 arms ranked by the posterior samples sampled from

the Beta distributions, Beta(Ai, Bi), 1 ≤ i ≤ 15. Particularly,

Ai=Bi=1 at t=1. At time t>1, by performing a Bernoulli

trial with success probability ĝti for each arm i that is selected

at t, Ai increases by 1 if the result is 1, otherwise, Bi increases

by 1. Similarly, we calculate the Oracle, the cumulative/per-

time-slot compound rewards, and violations in the same way

as described in Sec. IV-A.

Fig. 3 shows the results of our simulation. From Fig. 3(a)

and Fig. 3(b), we see both the cumulative reward and the

per-time-slot reward of LMG are approaching the Oracle

gradually. This indicates that LMG is as superior in maximizing

effective computing power as the Oracle does while learning

the availability probabilities and computing power of viewers.

MP-TS focuses on maximizing the effective computing power

so that it even has a higher compound reward than the Oracle.

But by doing so, it violates the minimum guarantee threshold

as shown in Fig. 3(c) and Fig. 3(d). On the contrary, LMG

has much lower cumulative/per-time-slot violations and its

per-time-slot violation keeps decreasing. Thus, this simulation

shows the effectiveness of LMG in selecting viewers for the

stability-guaranteed crowdsourced transcoding problem with

the minimum guarantee threshold ρ3.

V. RELATED WORK

There have been extensive studies regarding the online

learning framework using multi-armed bandit model since the

pioneering works [5], [6]. In this literature, our formulation of

the stochastic multi-armed bandit model is related to the bandit

models with multiple plays, where multiple arms are selected

at each time slot. [21] presents the EXP3.M algorithm to select

multiple arms using exponential weights. [22] proposes the

CUCB algorithm that selects multiple arms with the highest

upper confidence bound (UCB) indices. [20] presents the

multi-play Thompson Sampling algorithm (MP-TS) for arms

with binary rewards. Our model differs from these bandit

models as we further consider the stochastic constraint or

the minimum guarantee requirement in selecting the multiple



arms. Note that the constraint in our model is very different

from that in the bandit with budgets [23], [24] and the bandit

with knapsacks [25]. For these works, the optimal stopping

time is considered since no arm can be selected/played if

the budget/knapsack constraints are violated. However, the

constraint in our model does not pose such restrictions and the

arm selection procedure can continue without stopping. This

makes our problem more challenging as we need to consider the

violations of the minimum guarantee requirement introduced

by this non-stopping arm selection procedure. Finally, our

constrained bandit model is related to but different from the

bandit model considered in [26] which tries to balance regret

and violation. They only consider selecting a single arm without

any time-varying multi-level rewards. While in our work, we

consider how to select multiple arms and each arm is associated

with time-varying multi-level rewards, making our model more

flexible and better fit different network optimization problems.

Due to the effectiveness of the online learning framework

in finding the optimal decision and learning the unknown

application parameters, a lot of works have incorporated it

into network application optimizations. In [7], [8], [12], the

authors consider selecting the single-best channel to maximize

the throughput in opportunistic multichannel access networks,

and [13] designs an online dynamic channel access policy.

[17] proposes a combinatorial network optimization framework

based on UCB for graphs with unknown weights. [9] adopts

an online greedy strategy to employ participants for budget

limited crowdsensing. These works have been shown to be

effective in different network applications. However, they

neglect the minimum guarantee requirements in real-world

network applications, where our framework can be applied

and achieves better performance in terms of maximizing the

cumulative compound reward while meeting the constraint.

VI. CONCLUSION

In this paper, we first point out that existing works neglect

the minimum guarantee requirements in real-world network

application optimizations. To our best knowledge, we are the

first to propose an online learning framework using stochastic

constrained bandit model with time-varying multi-level rewards

for this kind of optimizations, and we are the first to design

a constrained bandit policy, LMG, by taking the minimum

guarantee requirement ρ into consideration with provable

sub-linear regret and violation bounds. We also show how

to apply LMG to three network applications: opportunistic

multichannel selection, data-guaranteed crowdsensing, and

stability-guaranteed crowdsourced transcoding. To gain more

insight into the policy, we demonstrate the effectiveness of

LMG by comparing it with existing state-of-the-art policies

and show that LMG achieves better network application

optimizations with larger cumulative rewards and smaller

violations.
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VII. APPENDIX

Proof of Theorem 1: From line 12 of the algorithm, we have:

λt+1=
[
(1− ηζ)λt − ζ(

ûᵀ
t p̃t

1−γ − ρ)
]+ ≤ [

(1− ηζ)λt + ζρ)
]+

,

where p̃t is the probabilistic selection vector of the policy

π̃ at time t. By induction on λt, we can obtain λt ≤ ρ
η. Let

Φt =
∑M

i=1w
t
i and Φ̃t =

∑M
i=1 w̃

t
i. Define rt = gt+ λtut and

r̂t = ĝt + λtût. Let pt be an arbitrary probabilistic selection

vector which satisfies pti ∈ [0, 1], 1ᵀpt = m and uᵀpt ≥ ρ.

For the sequence of selected It at t = 1, . . . , T ,
T∑

t=1

ln
Φt+1

Φt
= ln

ΦT+1

Φ1
= ln(

M∑
i=1

wT+1
i )− lnM

≥ ln(

M∑
i=1

ptiw
T+1
i )− lnM ≥

M∑
i=1

pti
m

∑
t:i/∈St

ζr̂ti − ln
M

m

=
ζ

m

∑M

i=1
pti

∑
t:i/∈St

r̂ti − ln
M

m
. (5)

As ζ = γηm
(η+m)M and λt ≤ ρ

η, we have ζr̂ti ≤ 1. Therefore,

Φt+1

Φt
=
∑

i∈M/St

wt+1
i

Φt
+
∑
i∈St

wt+1
i

Φt
=
∑

i∈M/St

wt
i

Φt
exp(ζr̂ti)+

∑
i∈St

wt
i

Φt

≤
∑

i∈M/St

wt
i

Φt
[1 + ζr̂ti + (e− 2)ζ2(r̂ti)

2] +
∑
i∈St

wt
i

Φt
(6)

= 1 +
Φ̃t

Φt

∑
i∈M/St

wt
i

Φ̃t

[
ζr̂ti + (e− 2)ζ2(r̂ti)

2
]

≤ 1+
ζ

m(1− γ)

∑
i∈M/St

p̃tir̂
t
i +

(e− 2)ζ2

m(1− γ)

∑
i∈M/St

p̃ti(r̂
t
i)

2

≤ 1+
ζ

m(1− γ)

∑
i∈M/St

p̃tir̂
t
i +

(e− 2)ζ2

m(1− γ)

M∑
i=1

(1 + λt)r̂
t
i. (7)

Inequality (6) holds because ey ≤ 1+ y+(e− 2)y2 for y ≤ 1,

and inequality (7) uses the fact that p̃tir̂
t
i = rti ≤ 1 + λt for

i ∈ It and p̃tir̂
t
i = 0 for i /∈ It. Since ln(1 + y) ≤ y for y ≥ 0,

we can get

ln
Φt+1

Φt
≤ ζ

m(1− γ)

∑
i∈M/St

p̃tir̂
t
i +

(e− 2)ζ2

m(1− γ)

M∑
i=1

(1 + λt)r̂
t
i.

Then using (5), it follows that

ζ

m

M∑
i=1

pti
∑
t:i/∈St

r̂ti − ln
M

m
≤ ζ

m(1− γ)

T∑
t=1

∑
i∈M/St

p̃tir̂
t
i

+
(e− 2)ζ2

m(1− γ)

T∑
t=1

M∑
i=1

(1 + λt)r̂
t
i.

As p̃ti = 1 for i ∈ St, and
∑M

i=1 p
t
i

∑
t:i∈St

r̂ti ≤
1

1−γ

∑T
t=1

∑
i∈St

r̂ti trivially holds, we have

T∑
t=1

r̂ᵀt pt−m

ζ
ln
M

m
≤

∑T
t=1 r̂

ᵀ
t p̃t

1− γ
+
(e− 2)ζ

1− γ

T∑
t=1

M∑
i=1

(1+λt)r̂
t
i.

Taking expectation on both sides, we have

E

[∑T

t=1
r̂ᵀt pt − 1

1− γ

∑T

t=1
r̂ᵀt p̃t

]



≤ m

ζ
ln
M

m
+
(e− 2)ζ

1− γ

∑T

t=1
E

[∑M

i=1
(1 + λt)r̂

t
i

]

≤ m

ζ
ln
M

m
+
2(e− 2)ζM

1− γ
T +

2(e− 2)ζM

1− γ

T∑
t=1

λ2
t , (8)

where (8) is from the inequality E[
∑M

i=1(1+λt)r̂
t
i] =

∑M
i=1(1+

λt)(g
t
i + λtu

t
i) ≤ 2M + 2Mλ2

t . Next, we define a series of

functions ft(λ) = η
2λ

2 + λ( 1
1−γû

ᵀ
t p̃t − ρ), t = 1, . . . , T , and

we have λt+1 = [λt − ζ∇ft(λt)]+. It is clear that ft(·) is a

convex function for all t. Thus, for an arbitrary λ, we have

(λt+1 − λ)2 = ([λt − ζ∇ft(λt)]+ − λ)2

≤ (λt − λ)2 + 2ζ2ρ2 + 2ζ2
(ûᵀ

t p̃t)
2

(1− γ)2
+ 2ζ[ft(λ)− ft(λt)].

Let Δ = [(λt − λ)2 − (λt+1 − λ)2]/(2ζ) + ζm2. We have,

ft(λt)− ft(λ) ≤ Δ+
ζ(ûᵀ

t p̃t)
2

(1− γ)2
=Δ+

ζm2( 1mû
ᵀ
t p̃t)

2

(1− γ)2

≤ Δ+
ζm2

(1− γ)2
1

m

M∑
i=1

(p̃tiû
t
i)
2 ≤ Δ+

ζm

(1− γ)2

M∑
i=1

ut
i.

Taking expectation over
∑T

t=1[ft(λt)− ft(λ)], we have

E
[η
2

∑T

t=1
λ2
t −

η

2
λ2T +

∑T

t=1
λt(

ûᵀ
t p̃t

1− γ
− ρ)

− λ
∑T

t=1
(
ûᵀ
t p̃t

1− γ
− ρ)

] ≤ λ2

2ζ
+ ζm2T +

ζmM

(1− γ)2
T. (9)

Combining (8) and (9), we have,∑T

t=1
gᵀ
t pt − E[

∑T
t=1 g

ᵀ
t p̃t]

1− γ
+ E

[− (
ηT

2
+

1

2ζ
)λ2

+ λ
∑T

t=1
(ρ− uᵀp̃t

1− γ
)
] ≤ m

ζ
ln
M

m
+
2(e− 2)ζMT

1− γ

+ ζm2T +
ζmMT

(1− γ)2
+ (

2(e− 2)ζM

1− γ
− η

2
)
∑T

t=1
λ2
t

+ E[
∑T

t=1
λt(ρ− uᵀpt)].

Since ζ = γηm
(η+m)M and η ≥ 4(e−2)γm

1−γ − m, we have
2(e−2)ζM

1−γ ≤ η
2. As uᵀpt ≥ ρ, we have

(1− γ)
∑T

t=1
gᵀ
t pt − E

[∑T

t=1
gᵀ
t p̃t

]
+ E

[
λ
∑T

t=1
((1− γ)ρ− uᵀp̃t)− (

ηT

2
+

1

2ζ
)λ2

]
≤ m

ζ
ln
M

m
+ 2(e− 2)ζMT + ζm2T +

ζmMT

1− γ
.

Let λ =
∑T

t=1((1−γ)ρ−uᵀp̃t)

ηT+1/ζ . Maximize over pt and we have,

max
uᵀpt≥ρ

∑T

t=1
gᵀ
t pt − E

[∑T

t=1
gᵀ
t p̃t

]

+ E

{[∑T
t=1((1− γ)ρ− uᵀp̃t)

]+2

2(ηT + 1/ζ)

}
≤ F (T ),

where F (T ) = m
ζ lnM

m+2(e−2)ζMT+ζm2T+ζmMT
1−γ +γmT .

Then we have results in the form of Eq. (4): Rπ̃(T ) ≤
F (T ), and Vπ̃(T ) ≤

√
2 (F (T ) +mT ) (ηT + 1/ζ). As γ =

min(1,
√

2(e−2)M+Mm
m ln(M/m)T 2/3) = Θ(T−1

3) and η = 4(e−2)γm
1−γ =

Θ(T−1
3), we have ζ = Θ( 1

MT−2
3). Finally, we have Rπ̃(T ) ≤

O(mM ln(M)T
2
3) and Vπ̃(T ) ≤ O(m

1
2M

1
2T

5
6). This finishes

the proof.
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